Prediction of coiled-coil domains.

Mauro Delorenzi and Terry Speed

Genetics and Bioinformatics, The Walter & Eliza Hall Institute, Parkville Melbourne, VIC 3050 Australia. Email: delorenzi@wehi.edu.au

The selection of proteins with certain characteristics from genomic sequences is a central goal of computational biology and data-mining. Proteins with coiled-coil domains are of interest for molecular biologists studying a variety of processes such as protein transport and membrane fusions and the infection of cells by parasites, [1],[2]. Coiled-coils are also motifs that mediate oligomerization and protein-protein interactions in many systems, f.ex. transcription factors [3].

We tested the performance of the two most commonly used tools (Coils and Paircoil) and our own new program Marcoil for the prediction of coiled-coil domains from a protein sequence. Marcoil is based on a hidden Markov model (HMM) and was trained in two different ways: the traditional Maximum Likelihood (ML) method and the Conditional Maximum Likelihood method (CML, [4]).

In the context of genomic data mining, the Sensitivity and Precision with which coiled-coil domains can be identified are the relevant features of diagnostic quality.
\[\text{Sensitivity} = TP / (TP + FN); \quad \text{Precision} = TP / (TP + FP) \].

A comparison of the Sensitivity versus Precision curves on our testset suggests that the ML and CML methods optimise performance in different segments of the curve, and that the HMM has a slight advantage over the traditional recognition methods, which use a fixed-length window and position specific scoring matrices (with correlation terms in Paircoil).

While all programs easily identify the subgroup of typical long coiled-coil structures and usually miss the short and hydrophobic coiled-coil domains, their performance differs on hydrophilic domains of intermediate length. The advantage of the HMM method probably derives from the flexibility it permits in domain lengths.

References: