

Pathways, Networks and Systems

Program co-chairs: Minoru Kanehisa Alfonso Valencia

Number of papers

	Submitted	Accepted	Percentage
Long	44	6	14%
Short	19	2	11%
Total	63	8	13%

Categorization of submitted papers

Network Structures 9

- Subgraph comparison (2)
- Graph kernel (1)
- Clustering (1)
- Scale-free, global topology (4)
- Visualization tool (1)

Network Inference 32

- Expression data (11)
- Proteomic data (5)
- Integrated data (4)
- Text data (1)
- Other data (5)
- Metabolic reconstruction (4)
- Database (2)

Network Dynamics 22

- Representation and reasoning (3)
- Modeling and simulation, biology (3)
- Modeling and simulation, methods (10)
- Metabolic flux analysis (4)
- Simulation tools (2)

JSB Encyclopedia of Bioinformatics

Network structure analysis Graph comparison Chemical compound structure comparison Glycan structure comparison Pathway comparison Graph kernel Clustering **Co-expression cluster** Ortholog cluster Network computation Network modules Scale-free network

Network inference Chemical reaction network Reaction path prediction Metabolic reconstruction Gene regulatory network (from expression data) Boolean network Bayesian network Graphical Gaussian modeling S-system Differential equation models Protein ineraction network (from proteomic data) Comparative genomics Probabilistic models Kernel statistical analysis

Simulation

Dynamics of molecular networks **Biochemical systems theory Biochemical reaction simulation** Genetic circuit analysis Metabolic flux analysis Probabilistic modeling Cell simulation Systems analysis Robustness analysis Systems of differential equations Metabolic control analysis Metabolic flux balance analsis

Network Structures

Local structural features

Long Paper #62 Mehmet Koyutürk, Ananth Grama, and Wojciech Szpankowski An efficient algorithm for detecting frequent subgraphs in biological networks

Global structural features

Short Paper #56 Teresa Przytycka and Yi-Kuo Yu Divergent evolutionary drift contradicts power law

Graph kernel

Long Paper #50 Koji Tsuda and William Stafford Noble Learning kernels from biological networks by maximizing entropy

Network Inference

Integration - kernel method

Long Paper #50 Yoshihiro Yamanishi, Jean-Phillipe Vert, and Minoru Kanehisa Protein network inference from multiple genomic data: a supervised approach

Expression data - probabilistic model

Long Paper #54 Iftach Nachman, Aviv Regev, and Nir Friedman Inferring quantitative models of regulatory networks from expression data

Expression data - metabolic reconstruction

Long Paper #60 Peter Kharchenko, Dennis Vitkup, and George M. Church Filling gaps in a metabolic network using expression information

Network Dynamics

Modeling and simulation

Short Paper #59 Tomer Shlomi and Eytan Ruppin Constraint-based modelling of perturbed organisms: a ROOM for improvement

Representation and reasoning

Long Paper #64 Chitta Baral, Karen Chancellor, Nam Tran, Nhan Tran, Anna Joy, and Michael Berens A knowledge based approach for representing and reasoning about signaling networks

Database

Long Paper #56 Naohiko Heida, Yoshikazu Hasegawa, Yoshiki Mochizuki, Katsura Hirosawa, Akihiko Konagaya, and Tetsuro Toyoda TraitMap: an XML-based genetic-map database combining multigenic loci and biomolecular networks

Level of Abstraction

BRITE Inference

Network modules for inferring higher-order functions

Basic Concept (1)

Graph = Set of nodes and edges = Set of binary relations Nested graph = Graph whose nodes can themselves be graphs → Level of abstraction, Ontology, Inference

Basic Concept (2)

Line graph = Graph derived by interchanging nodes and edges → Integration of genomics and chemistry

Metabolic networks can be viewed in two complementary ways

Gene network (Protein network)

• nodes: enzymes (gene products), edges: compounds

Chemical network

• nodes: compounds, edges: enzymes (reactions)

Graph-based Integration of Complex Biological Objects

Networks

- Known pathway (such as in KEGG maps)
- Co-expression relations by microarray experiments
- Protein interaction data by two hybrid experiments
- Ortholog relations by comparative genomics
- Gene relations by synthetic lethal experiments

Structures

- 3D molecular structures
- 2D chemical structures
- Molecular sequences (nucleotide, amino acid, and carbohydrate)
- Gene orders on the chromosome

Kernel-based Integration of Complex Biological Objects

Kernel function

 $\mathbf{K}(\mathbf{x}, \mathbf{y}) = \mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{y})$

similarity measure of two objects x and y obtained by mapping to the feature space f

Kernels for:

- Real-valued vectors polynomial kernel, RBF kernel
- Strings (sequence)
- Trees (phylogenetic tree, glycan structure)
- Graphs (networks, compound structure)