METABOLIC NETWORK ANALYSIS OF APICOMPLEXAN PARASITES

A PROBABILISTIC METHOD FOR IMPROVED ENZYME PREDICTION

Stacy Hung (Ph.D. Candidate)
Program in Molecular Structure and Function, Hospital for Sick Children, Toronto
Department of Molecular Genetics, University of Toronto
December 7, 2008
Motivation

- **Apicomplexa**
 - Unicellular eukaryotic parasites
 - Food-borne, water-borne illnesses
 - *Cryptosporidium spp.*, *Toxoplasma gondii*
 - Malaria
 - 500 million cases and 1 million+ deaths annually
 - *Plasmodium spp.*

- Lack of preventative treatments and increase in drug resistant strains

- Identify potential drug targets *in silico*
Metabolic network analysis

Enzyme datasets
- BLAST
- PRIAM
- BRENDA

Experiments

Annotated genome

Metabolic network
(Plasmodium falciparum)
Sequence diversity across EC categories

Globally align 117,000 enzymatic proteins
Categorize hits for 2,400 EC categories
Plot scores for hits in (1) same EC and (2) different EC

Probabilistic density function for each EC: A probabilistic method for classifying unannotated enzymes

Current enzyme sources are missing information on
1. Sequence diversity within a functional class
2. How reactions were assigned
3. Degree of confidence for each assignment

Insight into large-scale sequence evolution
Performance assessment

Sensitivity = \frac{TP}{TP+FN}

Specificity = \frac{TN}{TN+FP}

- 5-fold cross-validation:
 - EC numbers with 30+ proteins
 - Eliminate multifunctional enzymes

- Nearly 100% accuracy

- \textit{P. falciparum} gold standards
Calculate the probability that an unknown protein belongs to a particular enzyme category

\[
P(\text{unknown enzyme belongs to } EC \text{ with score } x) = \frac{P(EC) \times P(x \mid EC)}{P(EC) \times P(x \mid EC) + P(EC') \times P(x \mid EC')}
\]

\[
P(\text{unknown enzyme belongs to } EC) = -2 \sum_{i=1}^{n} \ln(p_i)
\]