CONFERENCE SPONSORS


CONFERENCE HOST UNIVERSITY AND GOLD SPONSOR:

Purdue University
Vice President, Office of Research
Bioinformatics Core


 SILVER SPONSORS:


Indiana University
University Information Technology Services
Department of Biology
School of Informatics and Computing
----------


University of Michigan, Dept of Computational Medicine and Bioinformatics

BRONZE SPONSORS:


The Research Division
of Ohio University
----------


Department of Computer Science and Engineering
Eck Institute for Global Health
Complex Networks Lab
University of Notre Dame


EXHIBITOR SHOWCASE SPONSOR:

 

Cincinnati Childrens’s Hospital Medical Center
Division of Biomedical Informatics, University of Cincinnati


POSTER AWARDS SPONSOR:


Faculty of 1000


BEST PAPER AWARD SPONSOR:


Springer


INDUSTRY SPONSOR:



University of Michigan Bioinformatics Core
----------

PerkinElmer


GENERAL SPONSOR:


Purdue University

Agricultural Research

Special Talks - ISMB 2014

ST01: Nobel Prize Celebration: Arieh Warshel's Legacy - Presented by Lynn Kamerlin

Room: TBA

Date/Time:  Sunday, July 13 at 11:30 a.m. - 11:55 p.m.

 

 The advent of the first enzyme structures in the 1960s, coupled to increasing computer power at the time, marked a turning point for computational enzymology. Specifically, starting in 1970, a number of different QM+MM and QM/MM approaches were introduced by Warshel and coworkers to facilitate the description of reactions in enzymes. This and molecular dynamics simulations of biological reactions (that also started with Warshel’s work), as well as the development of classical force fields, mark the emergence of multiscale models for chemical reactivity, that allowed us to begin to directly translate structural information into an energetic picture, to better understand enzyme function. In my view the most effective direction to address this problem has been the Warshel’s 1980s “empirical valence bond” approach. Despite its seemingly theoretical simplicity, the empirical valence bond approach remains one of the most powerful tools to understand chemical reactivity in biological systems even today. This talk will explore the theoretical basis and historical background for this approach, and illustrate its application to a number of the most challenging problems in computational enzymology. Additionally, the unimaginable gains in computational power of recent decades have allowed for ever more complex systems to be addressed. Therefore, this talk will conclude by discussing the power of the EVB approach to address 21st Century challenges such as enzyme design, understanding protein evolution, and addressing chemical reactivity in even such big biomolecular systems as GTP hydrolysis on the ribosome.