Leading Professional Society for Computational Biology and Bioinformatics
Connecting, Training, Empowering, Worldwide

ISCB News and Announcements

  • RSG with DREAM 2020, Nov 16 - 19, 2020, Virtual ISCB Event
  • ISMB/ECCB 2021, July 25 - 29, 2021, Lyon, France
  • ISCB-LA SoIBio BioNetMX 2020, Oct 28 – 29, 2020, Virtual Symposium
  • Applied Statistical Modelling and Health Informatics PG Cert, King’s College London
 ISCBacademy Webinar Series
Mark your calendars for TOMORROW, the 30th of June!
Please use the link below to find more information or to register for:

June 30, 2020 at 11:00AM EDT, Global surveillance of COVID-19 by mining news media using a multi-source dynamic embedded topic model by David Buckeridge, an ISCB COVID-19 Webinar

As the COVID-19 pandemic continues to unfold, understanding the global impact of non-pharmacological interventions (NPI) is important for formulating effective intervention strategies, particularly as many countries prepare for future waves. We used a machine learning approach to distill latent topics related to NPI from large-scale international news media. We hypothesize that these topics are informative about the timing and nature of implemented NPI, dependent on the source of the information (e.g., local news versus official government announcements) and the target countries. Given a set of latent topics associated with NPI (e.g., self-quarantine, social distancing, online education, etc), we assume that countries and media sources have different prior distributions over these topics, which are sampled to generate the news articles. To model the source-specific topic priors, we developed a semi-supervised, multi-source, dynamic, embedded topic model. Our model is able to simultaneously infer latent topics and learn a linear classifier to predict NPI labels using the topic mixtures as input for each news article. To learn these models, we developed an efficient end-to-end amortized variational inference algorithm. We applied our models to news data collected and labelled by the World Health Organization (WHO) and the Global Public Health Intelligence Network (GPHIN). Through comprehensive experiments, we observed superior topic quality and intervention prediction accuracy, compared to the baseline embedded topic models, which ignore information on media source and intervention labels. The inferred latent topics reveal distinct policies and media framing in different countries and media sources, and also characterize reaction COVID-19 and NPI in a semantically meaningful manner.

Register for an ISCB Webinar